
Department of Computer Science

Improving Data Efficiency for 
Natural Language Processing

Alon Albalak
Ph.D. Proposal

02/03/2023



Department of Computer Science

Machine Learning Pipeline

2



Department of Computer Science
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Machine Learning Pipeline
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Time

Money

Privacy
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How can we utilize machine learning 
when DATA is a severe bottleneck?
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Transferring External Knowledge
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Human Data
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Transferring External Knowledge
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Human Data

● Model inductive bias
● Domain knowledge
● Relational information
● Data augmentation
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Transferring External Knowledge
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Human Data

● Model inductive bias
● Domain knowledge
● Relational information
● Data augmentation

● Self-supervised domain data
● Labeled out-of-domain data
● Labeled related task data
● Data augmentation
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Self-supervised Training on Web Text 
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Self-supervised Training on Web Text 

GPT-3
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Self-supervised Training on Web Text 

GPT-3
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My Research on Data Efficiency
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Human Data

● Albalak et al. 2022 (preprint)
● Augustine et al. 2022 

(preprint)
● Dickens et al. 2022 (TPM 

workshop)
● Pryor et al. 2022 (preprint)

● Albalak et al. 2022 (EMNLP 2022)
● Albalak et al. 2022 (ENSLP 

workshop 2022)
● Li et al. 2022 (Alexa Prize 2022)
● Albalak et al. 2022 (ConvAI 

workshop 2022)
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My Research on Data Efficiency
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● Albalak et al. 2022 (ConvAI 
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Zero-shot Transfer Methods

Problem: No target data samples

Idea: Convert many tasks into text-to-text format

Allows: 1 model can perform multiple tasks

14

An Exploration of Methods for Zero-shot Transfer in Small Language Models.
Alon Albalak, Akshat Shrivastava, Chinnadhurai Sankar, Adithya Sagar, Mike Ross.
Efficient Natural Language and Speech Processing, 2022.
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Generative Models
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Multi-tasking with Text-to-text Transfer

16



Department of Computer Science

Multi-tasking for Zero-shot Transfer
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Instruction Tuning
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Generalization methods have been well studied in 
large language models.

How do they interact within smaller language 
models?
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Experiment Design

Data

• 46 Tasks from InstructDial1
• Tasks have between 3 and 10 

instructions
• 3 splits of train/test tasks

• 40 train tasks
• 6 test tasks

• Tasks are divided into 
classification and generation

20

Models

3 variants of BART
• BART-Base
• BART-Large
• BART0++

1Gupta et al. InstructDial: Improving Zero and Few-shot Generalization in Dialogue through Instruction Tuning. 2022
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Zero-Shot Results

• Model Size
• Multi-Task Learning (MTL)
• In-Domain (Dialogue) MTL
• Instruction Tuning

21
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Effects of Model Size

• Nearly identical performance on classification
• Slightly better BART-Base on generation
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Effects of Model Size

• Nearly identical performance on classification
• Slightly better BART-Base on generation

➢ Takeaway: With same data, larger model doesn’t 
necessarily improve performance
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Effects of Model Size + In-domain MTL

• BART-Base improves by 6.5 average
• BART-Large improves by 13.3 average

24



Department of Computer Science

Effects of Model Size + In-domain MTL

• BART-Base improves by 6.5 average
• BART-Large improves by 13.3 average

➢ Takeaway: Increasing model size AND training on in-domain 
data has better potential
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Effect of General Purpose Multi-Task Learning

• 14.5 point (57.1% relative) improvement on classification
• 0.6 Rouge-L (5% relative) improvement on generation
• BART0++ MTL tasks are mainly classification
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Effect of General Purpose Multi-Task Learning

• 14.5 point (57.1% relative) improvement on classification
• 0.6 Rouge-L (5% relative) improvement on generation
• BART0++ MTL tasks are mainly classification

➢ Takeaway: General purpose MTL is incredibly beneficial 
when test tasks are in same distribution as MTL tasks
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Effects of In-Domain Multi-Task Learning

28

Relative Improvement BART-Base BART-Large BART0++

Classification 41.8% 80% 37.7%

Generation 11.5% 29.3% 25.3%
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Effects of In-Domain Multi-Task Learning
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Relative Improvement BART-Base BART-Large BART0++

Classification 41.8% 80% 37.7%

Generation 11.5% 29.3% 25.3%

➢ Takeaway: In-domain MTL gives largest portion of generalization improvement
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Effects of Instruction Tuning
• Much smaller effect than previous variables
• 2% average improvement across models
• This finding runs counter to previous studies which found 

~10% decrease in performance for models w/ <8B 
parameters
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Effects of Instruction Tuning
• Much smaller effect than previous variables
• 2% average improvement across models
• This finding runs counter to previous studies which found 

~10% decrease in performance for models w/ <8B 
parameters

➢ Takeaway: Instructions are beneficial, but gains are 
diminishing
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Small models can benefit from multi-task training 
for zero-shot generalization

If we have a specific target task in mind, can we 
identify which tasks will transfer well?

32
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Previous Studies on Task Transfer
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Intra-Dataset Task Transfer With FETA

FETA: A Benchmark for Few-Sample Task Transfer in Open-Domain Dialogue
Alon Albalak, Yi-Lin Tuan, Pegah Jandaghi, Connor Pryor, Luke Yoffe, Deepak Ramachandran, Lise Getoor, Jay 
Pujara, William Yang Wang.
EMNLP 2022

34

Intra-Dataset Task Transfer:
Transferring knowledge from a source task to a target task, where both source 
and target are in the same distribution (domain)
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Intra-Dataset Task Transfer With FETA-Friends
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FETA: A Benchmark for Few-Sample Task Transfer in Open-Domain Dialogue
Alon Albalak, Yi-Lin Tuan, Pegah Jandaghi, Connor Pryor, Luke Yoffe, Deepak Ramachandran, Lise Getoor, Jay 
Pujara, William Yang Wang.
EMNLP 2022
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Intra-Dataset Task Transfer With FETA-DailyDialog
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FETA: A Benchmark for Few-Sample Task Transfer in Open-Domain Dialogue
Alon Albalak, Yi-Lin Tuan, Pegah Jandaghi, Connor Pryor, Luke Yoffe, Deepak Ramachandran, Lise Getoor, Jay 
Pujara, William Yang Wang.
EMNLP 2022
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FETA Learning Setting

• Pairwise task transfer within dataset
• 2 sets with 10 and 7 tasks = 132 source-target pairs
• For each experiment:

• Source task uses full data
• Target task uses 10% of data
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Experiments
3 Model Architectures

• Encoder - BERT
• Decoder - GPT
• Encoder-Decoder - T5

38

3 Transfer Algorithms
• Pre-train/Fine-tune
• Multitask
• Multitask/Fine-tune
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Sample Experiment
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Sample Experiment
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Sample Experiment
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FETA Takeaways

1. Finding the best source task can make a big difference
2. Label-space complexity affects transfer
3. Mitigating negative transfer with multitasking
4. Adding multiple sources can negatively impact transfer
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Takeaway - Gap between average and best 
source

• We find the difference between using the best source task 
vs. average of all source tasks to be ~1.6 points, with the 
largest gap being 3.5 points

• This strongly motivates the need for further understanding 
which source tasks will transfer best to specific target tasks
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Takeaway - Effect of label-space complexity

• We find that span extraction target tasks 
have positive transfer from all source task 
types

• Multiple choice target tasks also see 
positive transfer, but only when the ratio of 
source-to-target samples is large (>10-to-1 
as shown in Fig. 2 below)

• Both classification tasks see increasingly 
negative transfer with increasing number 
of source task samples

• Overall, as the label-space of a target task 
becomes more complex, the task benefits 
more from transfer
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Takeaway - Mitigate negative transfer with Multitask/Fine-tune

• We find that T5’s best individual scores are with 
Pre-train/Fine-tune, but the best average scores are with 
Multitask/Fine-tune

• In fact, for GPT-2 on FETA-Friends, using the worst source 
task will still lead to a 0.74% improvement over the baseline

• We find that across algorithms, Multitask/Fine-tune achieves 
the best worst-case performance
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Takeaway - Adding source tasks can negatively impact transfer

• Small scale experiment:
• 4 target tasks with best source tasks
• Train models using top-3 source tasks

• Results:
• GPT-2 improves most (8/12 settings)
• BERT improves on 5/12 settings
• T5 only improves on 4/12 settings

➢ Takeaway - Naively adding source tasks can actually hurt 
performance
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Not all source tasks are equal and adding more 
source tasks doesn’t always improve 
performance

Moving forward, how can we mitigate negative 
transfer?

48
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Current work
Few-shot Learning with Auxiliary Datasets - FLAD
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Few-shot Learning with Multi-armed Bandits

• Explore (auxiliary dataset) arms to find which gives best reward
• Exploit knowledge of previous rewards

• Use gradient alignment as reward

50
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Future Work

• Data pruning/selection
• How can we determine which samples to best use, efficiently

• Demonstration selection for in-context learning (ICL)
• How can we best select demonstrations for ICL based on a given task 

instance
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Questions

@AlbalakAlon
alon_albalak@ucsb.edu
https://alon-albalak.github.io/

mailto:alon_albalak@ucsb.edu
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Supplementary Materials
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FLAD Preliminary Results
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FETA Experiments
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FETA Experiments
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FETA Experiments
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FETA
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FETA Metrics
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FETA Metrics - Baseline Score
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FETA Metrics - Average Transfer Score
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FETA Metrics - Top-1 Score
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FETA Results - Aggregate Scores
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Abstract
• Machine learning algorithms are data hungry
• Unlabeled data is easy to gather, but hard to utilize for specific tasks
• Labeled data can be time consuming and expensive to gather, and sometimes impossible due to 

privacy concerns or the nature of the problem
• For these reasons, few- and zero-shot settings (which require little to no labeled data) are attractive 

learning paradigms
• In this talk, I discuss methods of improving data efficiency in natural language processing inspired by 

transfer learning, reinforcement learning, and neuro-symbolic methods.
• In the end, I’ll discuss current and future work for my PhD

Machine learning algorithms are data hungry, and although unlabeled data (e.g. web text) is easy to 
gather, it is difficult to utilize for specific tasks. Furthermore, labeled data can be time consuming and 
expensive to gather, and sometimes impossible due to privacy concerns or the nature of the problem.
This talk discusses methods of improving data efficiency in natural language processing inspired by transfer 
learning, reinforcement learning, and neuro-symbolic methods. The focus is on few- and zero-shot settings, 
which are attractive learning paradigms due to the challenges of gathering labeled data for specific tasks. 
The talk will also cover current and future work for the my PhD research in this area.
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• ~5 introductory slides
• Outline of my research area

• What is the broad area
• What are the specific areas I have focused on

• In depth-ish on 1-2 works
• Multi-task learning with prompts, instruction tuning, for zero- and few-shot
• FETA as a good testbed
• Finish with outcome that more source datasets didn’t always help, how can we 

improve on this?
• Future work - addressing those weaknesses + other areas of interest

• MAB for FLAD
•

• Timeline

Outline
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My research area

How do we improve data efficiency? Utilize additional information
We (roughly) categorize methods by the source of the information 
(2-sided figure with works on each side)
• Human knowledge (1-2 slides on how this works)
• Data related to our target domain/task

This presentation will focus on the second category
Specifically, we focus on methods for NLP
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Zero-shot transfer methods
• Background:

• How can multiple tasks be handled by one model?
• Encoder-only + task-specific head (classification tasks only)
• Generative models + text-to-text format

• Multi-task learning formulation
• Instruction tuning

Benefits have been demonstrated in large and massive language 
models, what about small models? (slide showing benefit from 
previous studies on large models)
Follow ENSLP slides to discuss data/models
Transition to FETA: Next, we’ll take a closer look at the effects of 
individual source tasks on the target task
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FETA

Transition to current/future work: So, we’ve seen the effects of 
negative transfer, not all source tasks are equal, and also that 
simply adding more source tasks doesn’t always improve 
performance. So, moving forward, how can we mitigate negative 
transfer?
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