Utilizing extrinsic information in NLP tasks

Alon Albalak Committee: Xifeng Yan (Co-chair), William Yang Wang (Co-chair), Lise Getoor

Machine Learning Pipeline

Machine Learning Pipeline

Data Sources

Data Collection Process

Label data in-house

 Time-consuming
 Domain knowledge

 Crowd-source labels

 Quality issues
 Expensive

• Domain knowledge

How can we build a model with little to no labeled data and limited resources?

Overview

- 1. Background
- 2. Dataless Classification
- 3. Zero-Shot Learning
- 4. Injecting Domain Knowledge

Overview

1. Background

- 2. Dataless Classification
- 3. Zero-Shot Learning
- 4. Injecting Domain Knowledge

Domains and Tasks

- ${\cal D}$ The set of all domains
- $\boldsymbol{\mathcal{T}}$ The set of all tasks
- \mathcal{X}_d Feature space for a given domain, $d \in \mathcal{D}$
- \mathcal{Y}_{t} Label space for a given task, $t \in \mathcal{T}$
- $f: \mathcal{X} \rightarrow \mathcal{Y}$ A classification function

Supervised Learning

Without labeled data

Weak Supervision

Approximate a mapping function, *h*, using imperfect sources such as:

Heuristic functions
 Distant supervision
 Semi-supervision

Ratner et al. 2016 | Varma and Re 2018

Relation Extraction

Bill Gates founded Microsoft on April 4th, 1975.

Entity1	Bill Gates
Entity2	Microsoft
Relation	

Mintz et al. 2009 | Riedel et al. 2010

Relation Extraction

Bill Gates founded Microsoft on April 4th, 1975.

Entity1	Bill Gates
Entity2	Microsoft
Relation	FounderOf

Entity1	Bill Gates
Entity2	Microsoft
Relation	FounderOf

Mintz et al. 2009 | Riedel et al. 2010

Bill Gates founded Microsoft on April 4th, 1975.

Entity1	Bill Gates
Entity2	Microsoft
Relation	FounderOf

Bill Gates stepped down as CEO of microsoft in 2000.

Bill Gates founded Microsoft on April 4th, 1975.

Bill Gates was the largest shareholder of Microsoft until 2014.

Entity1	Bill Gates
Entity2	Microsoft
Relation	FounderOf

Mintz et al. 2009 | Riedel et al. 2010

Transfer Learning

Store knowledge gained from solving one problem, and apply it to a related problem

Two types of transfer:

Domain adaptationTask transfer

Domain Adaptation

Learn a classifier in a *source* domain, but apply it in a related *target* domain

Task Transfer

Learn a classifier for a *source* task, apply it to a *target* task

Overview

- 1. Background
- 2. Dataless Classification
- 3. Zero-Shot Learning
- 4. Injecting Domain Knowledge

Importance of Semantic Representation: Dataless Classification

Chang, Ratinov, Roth, and Srikumar. AAAI 2008

Chang et al. 2008

Dataless Classification: Datasets

20 Newsgroups Dataset: Discussion forums Categories such as: Talk.politics.mideast Sci.electronics Rec.sport.hockey Yahoo! Answers Dataset: Question/Answer pairs Categories and subcategories such as: Arts and Humanities - Theater Acting **Sports - Rugby League** Chang et al. 2008

Text Classification

- \mathcal{D} Discussion Forums, Question/Answer pairs
- ${\mathcal X}$ Document text
- ${m {\mathcal Y}}$ Newsgroup names, Question/Answer categories

Text Classification

- \mathcal{D} Discussion Forums, Question/Answer pairs
- ${\boldsymbol{\mathcal{X}}}$ Document text
- ${m {\mathcal Y}}$ Newsgroup names, Question/Answer categories

On-the-Fly Text Classification

Given the full text corpus
 No labels associated with each text
 Label names only given at test time

66

Dataless Classification: Semantic Representation

Chang et al. 2008

Dataless Classification: Semantic Representation

2 methods of creating a semantic space:

- Bag-of-words
- Explicit Semantic Analysis

Bag-of-words model: "I enjoyed the movie..." =

best	enjoyed	I	movie	the
0	1	1	1	1

Category names are not known in advance

Category names are not known in advance

Dataless Classification: Results

Dataset / Accuracy	Supervised Baseline (10)	Supervised Baseline (100)	Nearest Neighbors Bag-of-Words	Nearest Neighbors ESA
Newsgroups	71.71	92.41	65.73	85.29
Yahoo! Answers	84.34	94.37	66.79	88.62

Chang et al. 2008

Dataless Classification: Takeaway

Dataless Classification: Takeaway

Overview

- 1. Background
- 2. Dataless Classification
- 3. Zero-Shot Learning
- 4. Injecting Domain Knowledge

Zero-Shot Relation Extraction via Reading Comprehension

Levy, Seo, Choi, and Zettlemoyer. CoNLL 2017

Relation Extraction:

O Given a text and entity pair, determine the relation

Relation Extraction - Slot Filling:

O Given a text, entity, and relation, determine the target entity from the text

Zero-shot Relation Extraction - Slot filling:

Test-time relations are unobserved during training

Zero-Shot Relation Extraction

- \mathcal{D} WikiReading
- ${\boldsymbol{\mathcal{T}}}$ Relation Extraction
- ${\mathcal X}$ Document text
- $\mathcal{Y} \mathcal{S} \cup \mathcal{U}, \mathcal{S} \cap \mathcal{U} = \varnothing$
- $\supset S$ Seen relations (eg. founderOf, educatedAt, etc.)
- $\supset \mathcal{U}$ Unseen relations (eg. occupation, spouse, etc.)

Zero-Shot Relation Extraction

Zero-Shot Relation Extraction: Task Reformulation

- \mathcal{D} WikiReading
- $\boldsymbol{\mathcal{T}}$ Reading Comprehension (Span extraction)
- ${oldsymbol{\mathcal{X}}}$ Document text
- ${oldsymbol{\mathcal{Y}}}$ Start/end tokens

Zero-Shot Relation Extraction: Task Reformulation

- \mathcal{D} WikiReading
- ${m {\cal T}}$ Reading Comprehension (Span extraction)
- ${\mathcal X}$ Document text
- ${m {\mathcal Y}}$ Start/end tokens

Question: Who founded Microsoft?

Context: Bill Gates founded Microsoft on April 4th, 1975.

Answer: <u>Bill Gates</u> founded Microsoft on April 4th, 1975.

Zero-Shot Relation Extraction as Reading Comprehension

Zero-Shot Relation Extraction: Querification

Each relation must be turned into a question template:

- \bigcirc EducatedAt \rightarrow Where did X go to school?
- Spouse \rightarrow Who is the spouse of X?

Zero-Shot Relation Extraction: Reading Comprehension

Zero-Shot Relation Extraction: Results

Method	Precision	Recall	F1
Random Named Entity	9.25	18.06	12.23
RNN labeler	13.28	5.69	7.97
Single Question	37.18	31.24	33.9
Question Ensemble	45.85	37.44	41.11

Zero-Shot Relation Extraction: Takeaways

- External information in the form of natural language questions
- Relies heavily on good semantic representation

Overview

- 1. Background
- 2. Dataless Classification
- 3. Zero-Shot Learning
- 4. Injecting Domain Knowledge

Injecting Logical Background Knowledge into Embeddings for Relation Extraction

Rocktaschel, Singh, and Riedel. NAACL-HTL 2015

Matrix Factorization in Relation Extraction

 \mathcal{E} - The set of entities \mathcal{R} - The set of relations $\bigcirc \mathcal{P} \subseteq \mathcal{E} \times \mathcal{E}$ - The set of entity-pairs Mowledge base matrix: $\circ \mathcal{P} \mathbf{x} \mathcal{R}$ matrix Rows represent entity-pairs Columns represent relations Goal: Find a low rank factorization of the knowledge base matrix Embedding matrix of entity-pairs - $|\mathcal{P}| \ge k$ Embedding matrix of relations - $k \ge |\mathcal{R}|$

	FounderOf	
BillGates Microsoft	1	Ø
ElonMusk Microsoft	0	

Matrix Factorization in Relation Extraction

P \mathcal{R} **v**_r - embedding for relation r $\mathbf{v}_{(i,j)}$ - embedding for entity pair (e_i, e_j) $\pi_r^{(i,j)} = \sigma(\mathbf{v}_r \cdot \mathbf{v}_{(i,j)})$ - probability of relation r holding for entity pair (e,,e) Conditional probability of a possible world w with the embeddings **V** is: $p(\mathbf{w}|\mathbf{V}) = \prod \pi_r^{(i,j)} \prod (1 - \pi_r^{(i,j)})$ $r(i,j) \in w$ $r(i,j) \notin w$

Loss:
$$-\log(p(\mathbf{w}|\mathbf{V}))$$

Injecting Logic into Factorization: Pre-factorization Inference

Add inferred facts as additional training data Eg: founderOf(x,y) \Rightarrow workedAt(x,y)

Injecting Logic into Factorization: Pre-factorization Inference

Add inferred facts as additional training data Eg: founderOf(x,y) \Rightarrow workedAt(x,y)

	founderOf	workedAt			founderOf	workedAt
BillGates Microsoft	1	0		BillGates Microsoft	1	1
Elon Musk Microsoft	0	0	V	Elon Musk Microsoft	0	0

Injecting Logic into Factorization: Joint Optimization

$$\min_{\mathbf{v}} \sum_{\mathcal{F}} -\log(\mathcal{F})$$
Rocktaschel et al. 2015

Injecting Logic into Factorization: Evaluation

Using distant supervision from Freebase Fill matrix with textual patterns from NY-Times corpus Train on:

- 3960 textual patterns for 139 relations
- 41913 entity-pairs
- 111488 facts

Test on:

12 relations that have no textual pattern 7293 facts

Injecting Logic into Factorization: Methods

- **MF** Matrix Factorization
- INF Logical Inference
- Post Post-factorization Inference
- Pre Pre-factorization Inference
- **Joint** Joint optimization

Injecting Logic into Factorization: Results

Zero-shot Relation Extraction	MF	Inf	Post	Pre	Joint
MAP	0.01	0.23	0.34	0.43	0.52
wMAP	0.03	0.1	0.21	0.33	0.38

Injecting Logic into Factorization: Takeaway

Injecting Logic into Factorization: Takeaway

founderOf(x,y) \Rightarrow workedAt(x,y)

Thank you! Questions?