Understanding and Improving Models Through a Data-Centric Lens

Alon Albalak

3 main components of training a model

3 main components of training a model: Architecture

3 main components of training a model: Optimization

3 main components of training a model: Data

3 main components of training a model

D-REX (NLP4ConvAl 2022) NeuPSL (IJCAI 2023) CausalDialogue (ACL 2023)

How can data affect a model?

• Improve model performance

Reduce costs

• Reduce undesirable behaviors

Data Selection: Can we train on better data?

• Definition:

"The process of taking a collection of candidate data points and creating a dataset that will be used to train or evaluate a machine learning model"

- Often overlooked, we often are given data and assume that's what we should use
- How can we make any guarantees of optimality for a dataset?

Data mixing

- A sub-problem within data selection
- Problem formulation:
 - Given data from multiple domains/tasks
 - Determine the optimal mixture weight for each domain/task

Background on Multi-Armed Bandits (MAB)

- MAB is a series of methods that solve the online decision making problem
- Formulation:
 - On each of N turns, select one of K arms
 - After being selected, arms return a reward generated by an unknown distribution.
 - Selection mechanism is the policy (π) of our bandit algorithm
- Goal: Accumulate the largest sum of rewards possible
- MAB defines a clear tradeoff between exploring and exploiting actions

Background on Multi-Armed Bandits (MAB)

EXP3

- **Exp**onential-weight algorithm for **Exp**loration and **Exp**loitation
- Defines a stochastic policy as linear combination of Gibbs and uniform distributions

$$\pi_t(a) = (1 - K\mathcal{E}_t) \frac{\exp(\mathcal{E}_{t-1}\hat{R}_a)}{\sum_{a'} \exp(\mathcal{E}_{t-1}\hat{R}_{a'})} + \mathcal{E}_t$$

 \mathcal{E}_t = exploration rate at turn t

EXP3

- **Exp**onential-weight algorithm for **Exp**loration and **Exp**loitation
- Defines a stochastic policy as linear combination of Gibbs and uniform distributions

$$\pi_t(a) = (1 - K\mathcal{E}_t) \frac{\exp(\mathcal{E}_{t-1}\hat{R}_a)}{\sum_{a'} \exp(\mathcal{E}_{t-1}\hat{R}_{a'})} + \mathcal{E}_t$$

 \mathcal{E}_t = exploration rate at turn t

UCB1

- Upper Confidence Bound algorithm
- Assigns each arm an upper confidence bound for the reward

$$UCB_{a,t} = \hat{\mathcal{R}}_a + \sqrt{\frac{2\mathrm{ln}t}{n_a}}$$

• Samples greedily

 $\sqrt{\frac{2 \ln t}{n_a}}$ = exploration rate at turn t

Improving Few-Shot Generalization by Exploring and Exploiting Auxiliary Data Presented at NeurIPS 2023

Alon Albalak

Colin Raffel

William Wang

Challenges of Few-Shot Learning

Goal: Train a model given a limited number of samples for a target task (e.g. 20 samples for coreference resolution)

Challenges:

- Learn structure of feature/label space
- Prevent overfitting to small sample size
- Need to interpolate/extrapolate between potentially massive gaps in sample space

Side note on extrapolation (IMPORTANT)

There are 2 types of scientist:

1. Those that can extrapolate from incomplete results

End side note

Challenges of Few-Shot Learning

Goal: Train a model given a limited number of samples for a target task (e.g. 20 samples for coreference resolution)

Challenges:

- Learn structure of feature/label space
- Prevent overfitting to small sample size
- Need to interpolate/extrapolate between potentially massive gaps in sample space

Few-Shot Learning

Few-shot target task

coreference resolution

Few-Shot Learning with Auxiliary Data (FLAD)

Few-shot target task

Auxiliary Datasets

coreference resolution

Failures of prior FLAD methods

- Assume all auxiliary data is relevant [1,2]
- Consider very small quantities of auxiliary data (1-3 datasets) [1,2,3,4]
- Determine auxiliary data based on pairwise interactions when using a single auxiliary dataset [3]
- Computation scales linearly (or worse) with number of auxiliary datasets

[1] Du et al. Adapting auxiliary losses using gradient similarity, 2020.

[3] Albalak et al. FETA: A benchmark for few-sample task transfer in open-domain dialogue, 2022.

[4] Chen et al. Weighted training for cross-task learning, 2022.

^[2] Verboven et al. Hydalearn, 2022.

The Challenges of FLAD

- How do we determine which auxiliary datasets will be helpful?
 - Manually comb through 100s of auxiliary datasets?
 - Train only on the most similar and discard the rest?
- How can we efficiently automate the decision-making process?

The Challenges of FLAD

- How do we determine which auxiliary datasets will be helpful?
 - Manually comb through 100s of auxiliary datasets?
 - Train only on the most similar and discard the rest?
- How can we efficiently automate the decision-making process?

With multi-armed bandits!

Our MAB-based FLAD Method

Designing Reward Functions

Gradient alignment	$\mathcal{R}^{GA} = \frac{\nabla_a \cdot \nabla_{\mathcal{T}}}{\ \nabla_a\ _2 \ \nabla_{\mathcal{T}}\ _2}$
Gradient magnitude similarity	$\mathcal{R}^{GMS} = \frac{2\ \nabla_a\ _2\ \nabla_{\mathcal{T}}\ _2}{\ \nabla_a\ _2^2 + \ \nabla_{\mathcal{T}}\ _2^2}$
Aggregated reward	$\mathcal{R}^{AGG} = \frac{1 + \mathcal{R}^{GA}}{2} + \mathcal{R}^{GMS}$

EXP3

- **Exp**onential-weight algorithm for **Exp**loration and **Exp**loitation
- Defines a stochastic policy as linear combination of Gibbs and uniform distributions

$$\pi_t(a) = (1 - K\mathcal{E}_t) \frac{\exp(\mathcal{E}_{t-1}\hat{R}_a)}{\sum_{a'} \exp(\mathcal{E}_{t-1}\hat{R}_{a'})} + \mathcal{E}_t$$

 \mathcal{E}_t = exploration rate at turn t

UCB1

- Upper Confidence Bound algorithm
- Assigns each arm an upper confidence bound for the reward

$$UCB_{a,t} = \hat{\mathcal{R}}_a + \sqrt{\frac{2\mathrm{ln}t}{n_a}}$$

• Samples greedily

 $\sqrt{\frac{2 \ln t}{n_a}}$ = exploration rate at turn t

Experiments

Models: T5-LM and T0 (both 3B)

Experiments

Models: T5-LM and T0 (both 3B)

Target Datasets: TOMix-eval (train a separate model for each)

- 11 datasets
 - sentence completion (COPA, HellaSwag, Story Cloze)
 - **NLI (ANLI, CB, RTE)**
 - coreference resolution (WSC, Winogrande)
 - word sense disambiguation (WiC)
- Only 20-70 samples for training, full evaluation

Experiments

Models: T5-LM and T0 (both 3B)

Target Datasets: TOMix-eval (train a separate model for each)

- 11 datasets
 - sentence completion (COPA, HellaSwag, Story Cloze)
 - NLI (ANLI, CB, RTE)
 - coreference resolution (WSC, Winogrande)
 - word sense disambiguation (WiC)
- Only 20-70 samples for training, full evaluation

Auxiliary Datasets:

- TOMix-train (35 datasets)
- P3 (260 datasets)

Results

	BASE MODEL	T5-	XL	T0-	3B
Training Method \setminus	Auxiliary Data	TOMix	<i>P3</i>	TOMix	<i>P3</i>
Target-Only	0	52.	82	56.	44
Explore-Only [8]		59.18	60.64	61.17	62.77
Exploit-Only [8]		59.79	60.49	60.87	62.87
EXP3-FLAD (\mathcal{R}^{AGG})		62.05	65.47	62.84	66.84
UCB1-FLAD (\mathcal{R}^{AGG})		62.08	65.63	62.93	66.29

Results

Takeaways

- 1. Our methods lead to 3**B models that outperform GPT-3 175B** and SOTA few-shot methods
- 2. Our MAB-based FLAD methods demonstrate **improved auxiliary dataset scaling** over existing FLAD methods
- 3. The **combination of exploration and exploitation is crucial** in determining the sampling policy
- 4. Our **gradient-based rewards add minimal computational overhead**, leading to very efficient algorithms that can scale to 100x more auxiliary datasets than previous FLAD methods

Efficient Online Data Mixing For Language Model Pre-Training

Alon Albalak

Liangming Pan

Colin Raffel

William Wang

Data Mixing for LLM Pretraining

• LLMs are often pretrained with data from multiple domains (wikipedia, Github, mathematics, etc.)

• Data mixing proportions are typically fixed prior to training, and do not adapt to training dynamics

Motivation for Online Data Mixing (ODM)

• Best prior method, DoReMi, optimizes for the best worst-case domain performance, but requires training 3 models minimum

• **Motivation**: The goal of pretraining is for a model to absorb large quantities of information.

• **Goal**: Can we develop an efficient online data mixing (ODM) algorithm that maximizes the information a model contains?

Online Data Mixing (ODM) Method

- Formulate ODM as a multi-armed bandit (MAB) using a variation of the Exp3 algorithm
 - At each turn, the data mixing policy (π) is defined as a Gibbs distribution of importance-weighted rewards mixed with a uniform distribution (to allow exploration)
 - Different from FLAD, ODM updates the expected reward as an exponential moving average (instead of a cumulative reward)

- Reward Information Gain:
 - Directly proportional to the entropy/perplexity
 - Reward for each domain is calculated directly as the loss

Online Data Mixing Method

Online Data Mixing Method

Algorithm 1 Online Data Mixing (ODM) **Require:** $\mathcal{D} = \{\mathcal{D}_1, \dots, \mathcal{D}_K\}$: Grouped dataset **Require:** f_{θ} : Parameterized model Require: L: Loss function **Require:** G: Gradient accumulation steps 1: Initialize: $K = |\mathcal{D}|; \quad \mathcal{E}_0 = \frac{1}{K}; \quad \forall i \in \{1, ..., K\} : \hat{R}_i = 0$ 2: for t = 1, 2, ..., N do 3: $\mathcal{E}_t = \min\left\{\frac{1}{K}, \sqrt{\frac{\ln K}{K \cdot t}}\right\}$ ▷ Update the exploration rate $\pi(\mathcal{D}): \pi(\mathcal{D}_i) \leftarrow (1 - K\mathcal{E}_t) \frac{\exp(\mathcal{E}_{t-1}\hat{R}_i)}{\sum_{i} \exp(\mathcal{E}_{t-1}\hat{R}_i)} + \mathcal{E}_t$ 4: ▷ Calculate the mixing distribution 5: $\forall i = 1, 2, \dots, K : \mathcal{L}_{\mathcal{D}_i} = 0$ ▷ Reset group losses 6: for $q = 1, 2, \dots, G$ do 7: Sample $\mathcal{D}_i \sim \pi(\mathcal{D})$ and sample a batch $\{\mathbf{x}, \mathbf{y}\}$ from \mathcal{D}_i 8: $\mathcal{L}_{\mathcal{D}_i} \leftarrow \mathcal{L}_{\mathcal{D}_i} + \mathcal{L}(f_{\theta}, \mathbf{x}, \mathbf{y})$ ▷ Record group losses for reward updates 9. end for Update model parameters w.r.t $\sum_{i} \nabla_{\theta} \mathcal{L}_{\mathcal{D}_{i}}$ for $i \in \{1, \ldots, K\}$ where $\mathcal{L}_{\mathcal{D}_i} \neq 0$ do 10: $\hat{R}_i \leftarrow \alpha \hat{R}_i + (1-\alpha) \frac{\mathcal{L}_{\mathcal{D}_i}}{\pi(\mathcal{D}_i)}$ 11: ▷ Update estimated rewards 12: end for 13: end for

Experimental Setup

- Data: The Pile with 22 domains (50 billion tokens)
- Models: 1 billion parameter decoder-only LM
- **Evaluation** (metrics):
 - The Pile test set (perplexity)
 - 5-shot MMLU (accuracy)
- Baselines:
 - The Pile Weights (TPW)
 - DoReMi-256k calculated on a 256k vocabulary tokenizer
 - DoReMi-50k calculated on same tokenizer as our model

Results

Online Data Mixing (ODM) improves training efficiency, requires 19% fewer iterations to reach the final validation perplexity of the next best method

Domain-wise comparison

ODM performs best on 9/22 domains, worst on Books, Github, and web text

DoReMi performs best on only 3 domains, worst on 2

Results

ODM leads to better downstream performance on MMLU, improves over TPW by 3% and DoReMi-50k by 1.9%

Method	Accuracy
The Pile Weights	0.27469
DoReMi-256k	0.27596
DoReMi-50k	0.27887
ODM	0.28416

Table 1: Average 5-shot accuracy on MMLU

ODM adds only ~0.00007% overhead!

Takeaways

 This version of ODM is not the ultimate solution, but it is a proof of concept that data mixing can be done online, efficiently

Future Research Directions

- 1. Data-Centric
- 2. Bigger Picture (moving beyond data)

Data-centric Research Directions

- Make data research more accessible (lower the barrier to entry)
 - Methods of directly measuring data
 - Scaling down
- Extending data mixing methods to individual data points
- Extending data selection methods to low-resource languages
- Improving data diversity in areas where it's most needed (e.g. alignment)
- Understanding models from a data-centric perspective
 - How can we maintain good memorization (e.g. facts), but remove bad memorization (e.g. PII)

Bigger Picture Directions

- Move beyond siloed data research
 - Combine the 3 components (architecture, optimization, data)
 - Systems research (multiple models, multiple optimization objectives, data for multiple purposes)
- Combining data-centric and neuro-symbolic directions
 - Multi-component systems can potentially solve more abstract problems
 - Multi-component systems are also more interpretable
- Humans + Machines
 - Understanding how/when models fail allows us to give them "feedback" through their training data
 - Optimization objectives don't care about societal impacts or unexpected side-effects, so humans need to

Questions?

Improving Few-Shot
Generalization by Exploring
and Exploiting Auxiliary Data

Efficient Online Data Mixing
For Language Model
Pretraining